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ABSTRACT 
Clinicaltrials.gov [1] houses information regarding clinical trials 
that are currently underway. In addition to information about 
background, purpose, and design of a specific clinical trial, the 
webpages also provide links to affiliated papers that can be found 
in PubMed [2] (a warehouse for citations in biomedical research). 
These links are explicit, but implicit links between clinical trials 
and publications more than likely exist. For example, a researcher 
may like to know if a given clinical trial is related to more 
publications than just the ones listed on the clinical trial webpage.  
This relation could be the result of similar key terms imbedded 
within the clinical trial webpages and PubMed abstracts.  By 
using a dependent clustering algorithm [3], and a novel approach 
using Naïve Bayes for heterogeneous datasets, we aim to give 
scientists in the biological community insight not only into related 
terms, but also clinical trials and/or other publications that may 
not have explicit links. 
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1. INTRODUCTION 
Clinical trials introduce novel techniques that prevent, diagnose or 
treat disease.  Often publications are generated as a result of a 
clinical trial and reveal key information regarding the approach, 
methodology and results.  Clinicaltrials.gov, a database which 
maintains public information about current ongoing clinical 
research studies, lists publications that are affiliated with each 
clinical trial.  These same publications can be found in PubMed.  
Relations between a given clinical trial and its associated 
publications already exist; however, there may be undiscovered 
links between a given clinical trial and other publications, or even 
other clinical trials. 
 
With this study, we are hoping to utilize pre-existing explicit links 
to provide additional insight with regard to implicit links between 
clinical trials and biological publications to individuals within the 
scientific community.  In addition to implicit links, we are hoping 
to reveal similar terminology that exists between linked 
publications and clinical trials. 

2. DATA DESCRIPTION 
The data for this project consists of terms found in webpages from 
Clinicaltrials.gov and abstracts in PubMed. The data is organized 
into two weighted term document matrices, one for data gathered 
from Clinicaltrials.gov, and the other from PubMed abstracts. 
Each matrix row is associated with a single document, while each 
column is associated with a term found within the document.   

3. Data Preprocessing 
For this phase of the project, the frequencies of each term are 
weighted using term frequency-inverse document frequency, more 
commonly known as tf-idf [4].  Each tf-idf value is increased 
proportionally with the number of appearances within a single 
document, but is balanced out by the number of times the term 
appears within all documents examined.  Many TF-IDF thresholds 
were explored in the generation of our datasest.  What we found 
was that lower thresholds (i.e. 0.01) tended to produce better 
results for both k-means and the dependent clustering algorithm. 
 
In addition to the two weighted document term matrices, we 
utilize a relations file that illustrates the explicit relationships 
between clinical trials and PubMed publications. All three of these 
documents are used in the dependent clustering algorithm 
described below. 
 
After reviewing the results section of this paper, it becomes quite 
obvious that going forward, we will more than likely need 
additional pre-processing constraints.  More specifically, we need 
to clean-up the data for both PubMed abstracts and Clinical Trials 
excerpts.  To do this we are proposing a two-step algorithm.  The 
first step involves concatenating all of the words of each text file 
into two files for each dataset – one that contains the names of the 
files, which will be used to create the tf-idf weighted term 
matrices, and the second contains just the words that will be used 
to create the list of terms.   
 
For the generation of weighted document-term matrices in 
previous assignments, we had used the Textmodeller package, 
which provides document, term and matrix files in the appropriate 
format for dependent clustering to use as input.  We had noticed 
that using this method on the pre-processed data generated entities 
or phrases that in some cases were coherent, but the majority of 
the entities turned out to be of no real use.  For example, 
Textmodeller did return entities such as “thyroid cancer” or “stem 
cell”.  In both cases, the meaning of those two words together 



adds more specificity and context than either one could do on 
their own.  However, the majority of the entities were a 
concatenation of terms such as the following, “arms arm arm 
oxaliplatin arm arm”.  In this example, the combination of those 
terms together doesn’t seem to provide any additional meaning or 
insight into the phrase.  As a result, we decided it was best to run 
two different weight matrices through the dependent clustering 
code: one that had been generated via Textmodeller, and the other 
that was generated from individual terms, such as 
“adenocarcinoma” or “neoplasia”. 
 

Textmodeller codes produced 1,696 unique terms for PubMed 
documents, and 1,492 unique terms for the Clinical Trials 
documents.  A simple solution for reading documents and finding 
TF-IDF values for single terms was implemented in Java.  This 
process yielded 818 unique terms for Pubmed and 802 unique 
terms for the Clinical Trials dataset.   
 

After reviewing the results section of this paper, it becomes quite 
obvious that going forward, we will more than likely need 
additional pre-processing constraints. More specifically, we need 
to clean-up the data for both PubMed abstracts and Clinical Trials 
excerpts. To do this we are proposing a two-step algorithm. The 
first step involves concatenating all of the words of each text file 
into two files for each dataset– one that contains the names of the 
files, which will be used to create the tf-idf weighted term 
matrices, and the second contains just the words that will be used 
to create the list of terms. After the files are generated, 
punctuation, numbers, and any unwanted symbols such as ‘#’, 
‘%’, ‘:’ will be removed from the list, and all letters will be 
converted to lower case. Next, repeated words will be removed 
from the list. Our first approach tolumping together similar terms 
and getting rid of unwanted terms involved both the use of ignore 
lists and WordNet. However, our datasets still maintain quite a bit 
of noise. Since we are primarily interested in biological terms, the 
second step of the algorithm required the use of LingPipe tool kit 
which include two data models to make a data dictionary. Using 
the the code provided in the tutorials by LingPipe as base, we 
trained a Name Entry Recognizer with two data models [6] to get 
the type of the terms. One of the challenges was defining the type 
since we needed to keep more than one type of terms. Even 
though these codes provided a good insight of what the terms 
should look like, the code results threw sentences instead of 
words. In order to get better results, we used some code from 
BeCAS: biomedical concept recognition services and 
visualization. Which allowed us to get better terms. Here are some 
of the final terms we used for the Trials and PubMed abstracts: 
abdomen, abdominal, abg, abt, ace, acetate, acitretin, acth, 
adenocarcinoma, adenocarcinomas, adenoid, adenoma, adenomas, 
adenovirus, adjuvant, adriamycin, aggressive, agonist, agonists, 
agus, air. Once the biological terms were defined, we were able to 
remove all the unwanted words from the list of terms. 
 

4. METHODOLOGY 
In this project, we are taking two different but complementary 
approaches.  The first of which involves a dependent clustering 
algorithm, developed by Dr. M. Shahriar Hossain in an effort to 
find implicit relationships and similar terms between the clinical 
trials dataset, and the PubMed abstracts dataset.  The second 
approach involves the development of a novel technique for 

classifying documents from heterogeneous datasets via Naïve 
Bayes.  Following is a short description of both approaches. 

The first step of the dependent clustering algorithm is to 
separately assign vectors in each of the two datasets to clusters via 
k-means.  The second step involves preparing contingency tables 
based on the clustering results and the pre-existing relationships 
between the two datasets.  Finally, each of the contingency tables 
are evaluated by minimizing a cost function such that 
relationships in one cluster of the clinical trials dataset are 
exclusive to only a single cluster in the PubMed dataset. These 
individual steps are repeated until convergence. 

Finally, Naïve Bayes Classification will be applied to the 
heterogeneous data set. This algorithm uses training data to 
predict classes of new data entries. In this context, the Naïve 
Bayes Classification will either reinforce existing links or suggest 
new links that may better cluster the data and provide insight in to 
the architecture of the data set. The result may also further 
advance the data preprocessing phase by adding previously 
implied links further connecting the two data sets.  

5. RESULTS 
5.1 Term Elimination via Term Variance 
In the initial phases of our work, we wanted to see how our data 
would cluster using the implementation of dependent clustering 
that was authored by Dr. M. Shahriar Hossain. Because most of 
the data were clustered into a big cluster and we decided to 
remove some not important (the term with less descriptive power) 
terms to improve the performance. In our last phrase we already 
tried our methods with the data generated with a TF-IDF cut-off 
value of 0.3. In this phase, we tested the method on the data with 
threshold 0.01.  
K-means has been shown to work very hard to place roughly the 
same number of instances in each cluster, and since our 
preliminary results varied significantly from this school of 
thought, the number of terms in each dataset was reduced [7].  To 
do this, terms for both PubMed and Clinical Trials datasets were 
eliminated by leveraging the variance of each term.  Variance is a 
good way to measure the differential power of a term.  Low 
variance of a term indicates that either the term is not present in 
any of the documents, or the term is present in most or all of the 
documents. Thus, terms with low variance do not maintain any 
discriminatory power. 
To rule out terms from both datasets with low variance and 
exceptionally high variance, document-term matrices were 
generated, the variance of each term was calculated, the terms and 
their associated variance values were ranked in decreasing order, 
and the results were plotted.  Figure 1 illustrates the resulting plots 
for both cases.   

 
Figure 1. Term Variance Plots for both the PubMed dataset (left) 
and the Clinical Trials dataset (right). 

Using these plots, a set of minimum variance thresholds was 
established for each dataset.  Compared to the method in our last 
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phase, we didn’t set the maximum threshold because the higher 
variance has better ability to describe the label of the documents. 
Once the variance thresholds were determined, k-means was run 
with different minimum thresholds. We used two different 
measurements to choose the best threshold, one is the term 
percentage in the largest cluster and the other one is ASC. The 
figures are shown below. And the thresholds we choose are 
0.00008 and 0.000070. 

 

 
Figure 2. Term percentage in the largest cluster plots (left figures) 
and ASC plots (right figures) for PubMed and Clinical trial 
dataset. 
 

5.2 Dependent Clustering 
Determining the optimal maximum and minimum thresholds 
allowed us to reduce the number of terms in both the PubMed and 
the Clinical Trial datasets.  Dependent clustering was run again to 
determine whether or not feature reduction by variance helped to 
more equally distribute documents amongst clusters. 
Histograms of the clustering results were generated before and 
after applying dependent clustering on each of the datasets.  To 
test the differences of using each entity as feature and using each 
term as feature, we applied the dependent clustering algorithm on 
both datasets. The figures are shown below. 
 

  
Figure 3. Clinical Trials (left) and PubMed (right) Frequency of 
Documents in each Cluster before dependent clustering was 
applied (k=5). Each entity was used as a feature. 

 

 
Figure 4. Clinical Trials (left) and PubMed (right) Frequency of 
Documents in each Cluster before dependent clustering was 
applied (k=5). Each term was used as a feature. 
From the figures we noticed that all of the documents in both 
datasets were classified into one large cluster.  But using entiry or 
term as feature makes some different on these two datasets: When 
using the term, the largest cluster for PubMed contains a little bit 
more than 300 entries, and the largest cluster for Clinical Trial 
contains about 350 entries. When using the entity as the feature, 
the number becomes 600 and 250. 
 

For both datasets, after the dependent clustering, we only get one 
giant cluster for both Clinical Trial and PubMed. 

 
Figure 5. Clinical Trials frequency of documents in each cluster 
for both datasets after dependent clustering was applied (k=5). 

 

 
Figure 6. PubMed frequency of documents in each cluster for 
both datasets after dependent clustering was applied (k=5).  

5.3 Data Visualization 
To have a better understanding as to why the data is not working, 
we aimed to obtain a better visualization of the data.  Since our 
data is high dimensional data, meaning that it has thousands of 
variables, we cannot simply plot out the original data.  In this 
project, we used the principal component analysis (PCA) 
algorithm to reduce the dimensionality of the original data [8].  
With the help of PCA, we obtain the most informative data from 
the original dataset.  After running PCA with two principal 
components, we obtain PC1 and PC2, which contain the first and 
second most information from the original data.  As such the 
dimension of the data was reduced to two.  Figure8 illustrates the 
PCA plots for both PubMed and Clinical Trials data.  From the 
figures, we can see no obvious separation of clusters, and most of 
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the data is clustered into one large group.  We also observed 
several outliers which might explain why dependent clustering 
gives us one big cluster and several very small clusters. The 
figures below show the patterns of our PC plots for using entity as 
feature and each term as feature. And we can see using different 
features, the PC plot patterns are very different. 
 

 

 
Figure 7. Results of principal component analysis (PCA) applied 
to both the PubMed and Clinical Trials datasets. The upper figures 
show the PC plots using each entity as a feature, and lower figures 
show the PC plot using each term as a feature. 
 

5.4  Term Analysis  
To analyze why the dependent clustering is not working, first, we 
tried to explore more into each cluster, and we found kmeans 
failed to separate the data into different categories. For example, 
the first cluster, which is the biggest cluster, contains a stuff 
including cell, tumor. The second cluster contains kidney, 
hormone.  The third cluster is related to prostate, skin. The third 
group involves many terms overlapped with other clusters like 
tumor, cell. And the third group is a very tiny group which also 
has many terms overlapped with other group, and it has some high 
frequency word like microcalcification, carcinoma. The data we 
used contain several different types of cancer, and we hope we 
can use the clustering algorithm to separate them, but the results 
are not as good as we expected. One possible reason is some other 
terms dominated the whole dominated, so the clustering is not 
good. More terms are shown in the figure below: 
 

Cluster 
number 

Terms 

1 Gemcitabine, fluorouracil, pancreatic, 
adenocarcinomas, tumor, cells, leucovorin, cancer, 

pancreas, bile 

2 Breast, mbc, mtd, leucovorin, cancer, tumor 

3 Fenretinide, renal, kidney, oral, interleukin, 
ifosfamide, cbdca, etoposide, transplant, 

lymphoma, engraftment 

4 Cells, leucovorin, cancer, bcg 

5 Neoplasia, selenium, cellular, proliferation, ducts, 
chromatin, vitamin 

Table 1: The overview of the random terms in each cluster. 
 

To have a better understanding of what is inside in biggest cluster, 
we plotted analyzed the frequent terms. Due to the limitation of 
the time, all the following analysis was using the data with each 
term as a feature. There 354 documents in the largest cluster. We 
plotted the distribution of the terms, and for the clinical trial data, 
there are 802 terms and the most frequent term has appeared 330 
times in this cluster. For PubMed data, it has 823 documents, and 
the largest cluster has 308 documents with 818 features (terms). 
The table below shows the top 10 most frequent terms and their 
frequency. 

  
Figure 8: Distribution of the terms in the largest cluster for 
Clinical Trial data (left) and PubMed data (right). 

Clinical Trial PubMed 

Term Frequency Term Frequency 

cancer 330 carcinoma 164 

tumor 314 cell 93 

cells 302 cancer 46 

cell 193 renal 43 

carcinoma 146 head 36 

arm 122 neck 36 

lung 112 patient 25 

arms 108 cells 24 

patient 96 cisplatin 24 

cisplatin 95 cardia 22 

Table 2: Top 10 most frequent terms and their frequency in the 
largest cluster for Clinical Trial data and PubMed data. 

Also we also analyzed the second biggest cluster, there are 32 and 
255 documents in the second largest cluster for each data. And the 
figures of the term distributions and table of term frequencies for 
both Clinical Trial and PubMed are listed below: 

  
Figure 9: Distribution of the terms in the second largest cluster for 
Clinical Trial data (left) and PubMed data (right). 

Clinical Trial PubMed 
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Term Frequency Term Frequency 

cancer 28 cancer 240 

tumor 24 cisplatin 55 

carcinoma 23 paclitaxel 51 

cell 22 cell 48 

cells 22 lung 42 

renal 20 carcinoma 41 

kidney 18 adjuvant 34 

growth 17 adenocarcinoma 31 

blood 16 fluorouracil 29 

interferon 10 gemcitabine 29 

Table 3: Top 10 most frequent terms and their frequency in the 
second largest cluster for Clinical Trial data and PubMed data. 

For the third largest clusters, there are 17 and 115 documents for 
each datasets.  

  
Figure 10: Distribution of the terms in the third largest cluster for 
Clinical Trial data (left) and PubMed data (right). 

Clinical Trial PubMed 

Term Frequency Term Frequency 

prostate 17 lung 115 

cancer 17 cancer 113 

cells 14 cell 46 

tumor 12 nsclc 44 

adenocarcinoma 11 paclitaxel 17 

arm 10 leukemia 14 

psa 9 adjuvant 14 

arms 9 carboplatin 12 

antigen 7 cisplatin 10 

oral 7 cranial 8 

Table 4: Top 10 most frequent terms and their frequency in the 
third largest cluster for Clinical Trial data and PubMed data. 

For the rest two clusters (small clusters), we also had a brief look 
at them and the listed the top three clusters. For clinical trial data, 
the top three clusters of the fourth the last clusters are: {cancer, 
breast, women} and {bcg, bladder, recurrence}, respectively. For 
the PubMed data the top 5 terms of the rest two relatively small 
clusters are {cancer, ovarian, prostate, cervical, adjuvant} and 
{breast, cancer, adjuvant, letrozole, aromatase}. 

From the results above, we decided to remove the common terms. 
For Clinical Trial data, we removed {cancer, tumor, cells, cell}, 
for PubMed data we removed {cell, cancer, cells}. And we set 
k=8, rhoDivD=0.001, Then we reran the Kmeans clustering, and 
we get the following results: 

   
Figure 10: The histogram of clusters before dependent clustering 
for Clinical Trial and PubMed dataset. 

  
Figure 11: The histogram of clusters after dependent clustering for 
Clinical Trial and PubMed dataset. 
After the dependent clustering, the clinical trial data was divided 
into two clusters. And we analyzed the top 10 terms and their 
frequencies in each cluster. There are 201 documents in cluster 1 
and documents in cluster 2. 

Cluster 1 Cluster 2 

Term Frequency Term Frequency 

carcinoma 89 arm 100 

lung 64 carcinoma 97 

patient 57 arms 92 

oral 55 cisplatin 63 

arm 43 patient 52 

paclitaxel 39 oral 50 

arms 36 paclitaxel 50 

cisplatin 34 lung 49 

blood 34 carboplatin 40 

mtd 29 growth 36 

Table 5: Top 10 terms of each cluster after dependent clustering 

From the table, we found most of the terms in each cluster are 
overlapped, which means the dependent clustering made the 
clustering results worse. 

In addition, we also tried k=5, 10, rhoDivD=0.01, 0.00001, the 
dependent clustering is still not working good, only gave us one 
giant cluster. 
 

6. NAÏVE BAYES CLASSIFICATION 
6.1 Motivation 
Part of the heterogeneous dataset in question consists of explicit 
relations between the PubMed articles and the clinical trials. 
However, each PubMed article has no more than two relations, 
with the vast majority containing only one explicit relation. This 
can become problematic as only little information is gained from 
each article only containing one relation. If an algorithm can 
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accurately suggest more relations to further define how the two 
datasets are connected, this should, in theory, improve the 
dependent clustering algorithm. Naïve Bayes Classification suits 
perfectly for this task, with the addition of predicting relations to 
documents that do not exist in the training data. 

6.2 Implementation 
Naïve Bayes Classification had to be modified to handle the 
document-to-document analysis. In essence, when determining the 
probability a document in corpus A is related to a document in 
corpus B, the sum of all the probabilities of every term in 
document B, given every term in document A, leading to the 
following formulas. 

𝑃 𝐷! 𝐷!) ∝ (𝑃 𝑡! ∙ 𝑃(𝑡!|𝑡!)
!!

!!!

)
!!

!!!

 

𝑃 𝑡! 𝑡!) ∝
𝑁! 𝑡! + 1
𝑁! 𝑡! + 1!

!∊!
 

Where A is the total number of unique terms in document A and 
𝑁! 𝑡!  is the number of times term t appears in document A. 
Laplace smoothing adds an extra instance of each term in in order 
to avoid the detriment of a value of 0 to computations. Because 
these results are proportional to probability, but not actually the 
probability, we will use the term ratings to refer to the rese results. 

After implementation of this algorithm on Java, the output was 
sent to a text file that contained the rating of every pair of 
documents from PubMed to Clinical Trials. This large file 
contained numerous double values approaching zero due to the 
product of large denominators in calculating 𝑃 𝑡! 𝑡!). This 
clearly raised a question of accuracy amongst the team. In 
traditional Naïve Bayes Classification, logarithms are placed 
around the probabilities to improve accuracy and speed, allowing 
for the summation and subtraction of logarithms as opposed to 
multiplication and division of term counts. However, this same 
strategy does not hold true for the modified Naïve Bayes 
Classification. The rating value of traditional Naïve Bayes 
Classification consists of one term comprised of the product of 
multiple factors. In comparison, this modified heterogeneous 
version consists of the sum of multiple terms each comprised of 
the product of multiple factors, meaning a logarithmic function 
cannot improve accuracy in this case. 

Future work will focus more on the issue of accuracy, but the 
current results may hold enough accuracy to use for preliminary 
results due to the large range of floating point numbers where 
some accuracy and the exponent are preserved.  

6.3 Analysis 
The Heterogeneous Naïve Bayes Classification ran with the 
PubMed and Clinical Trial datasets. Because this algorithm is 
unidirectional, two separate tests were done, one finding the 
relational ratings for PubMed articles mapped to Clinical Trials 
and the second test finding the relational ratings for the Clinical 
Trials mapped to the PubMed articles. These ratings were then 
sent to two separate output files that underwent analysis. 

Firstly, the pairs of documents that had explicit relations before 
the algorithm should have high ratings. This held true for both 
output files. We can view 𝐶! as the 𝑛!! document from Clinical 
Trials and 𝑀! as the 𝑛!! document and 𝑅!,! as the relation 
between PubMed article m and Clinical Trial document c. 
𝑅!,! = 1 if an explicit relation exists between the two document 
pairs and 𝑅!,! = 0 if no explicit relation exists between 𝑀! and 

𝐶!. If 𝑃 𝐶! 𝑀!  ends up with a high rating and 𝑅!,! = 0, then 
one can assume that 𝑃 𝐶! 𝑀!) also holds a high rating where 
𝑅!,! = 1 and that 𝑀! and 𝑀! most likely have similar contents in 
their documents. This should even apply to documents not in the 
training data as well. 

A number of documents were looked at from PubMed where the 
ratings were high in relation to documents from Clinical Trials, 
but no explicit relation existed. Then, the contents of these 
PubMed documents with the PubMed documents that were 
explicitly related to the Clinical Trials at hand were manually 
investigated. In other words, we compared 𝑀! such that 𝑅!,! = 0 
with 𝑀! such that 𝑅!,! = 1 where 𝑃 𝐶! 𝑀!)   ≊ 𝑃 𝐶! 𝑀!). One 
such case involved 𝑅!"#,!"! = 1 where 𝑃 𝐶!"! 𝑀!  was highly 
related even though𝑅!,!"! = 0. When manually investigating the 
contents of 𝑀!"# and 𝑀!, one finds that 𝑀!"# focuses on 
immunotherapy for breast cancer, while 𝑀! focuses on adjuvant 
chemotherapy in non-small-lung cancer. When taking in to 
account that this particular heterogeneous dataset consists of all 
cancer-related documents, then these two should be relatively 
different, which are, subjectively, undesired results. The results 
are similar when analyzing 𝑃 𝑀! 𝐶!). 
The poor results seems to stem from the lack of explicit relations 
in the original training data. With more explicit relations, we 
expect more desired results. Also, documents that seem to user 
likely words, such as “cancer”, more often than other documents, 
tend to add weight to the probabilities of the other documents as 
relations are calculated. 

6.4 Future Additions 
Due to the results of Heterogeneous Naïve Bayes Classification, it 
is apparent that alterations to the algorithm need to be considered 
in addition to the improvement of accuracy. Also, as is usual with 
learning algorithms, lack of training data leads to poor results. 
Future work would look for larger data sets with more explicit 
relations. 
 

7. Discussions 
From the results of limited trails, we only found the k=8 and 
rhoDivD=0.001can make dependent clustering work. And the 
result is not as good as we expected. The reason is probably 
because of the algorithm is sensitive to the data and parameters. 

In addtiona, from the results above, we found several interesting 
findings: first, we found the two ASC plots are very similar, while 
the plots of percentage of biggest cluster are different. Second, for 
the clustering before the dependent clustering, using the entity as 
the feature is better for Clinical Trial dataset, and using each term 
as a feature is better for PubMed dataset. For the PC plots, the last 
dataset have different patterns from previous one. Third, in terms 
of percentage of the largest cluster, the using each entity as a 
feature outperforms using each term as a feature for clinical trial 
data, but for PubMed data is opposite. 

In future, we need to be more focused on preprocessing the data, 
try to analyze terms and eliminated the irrelative ones. Also we 
should try different combination of parameters. And from the 
analyzing of the terms of each cluster, we think the cluster before 
dependent clustering failed to put these documents into right 
clusters, and that might be the reason the algorithm is not working 
well. So what we can try in future is to find a better way to 
classify the documents. For example, use supervised learning to 
classify all the document into different cancer types, or go back to 



original abstract, and extract the cancer related terms and classify 
the documents based on that.   

Furthermore, we wish to incorporate the suggested relations to 
investigate if the dependent clustering algorithm improves. 
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